

U.S. OLED Lighting Manufacturing Status and Trends

John W. Hamer OLEDWorks LLC

OLEDWorks Introduction

- We are the only US manufacturer of OLED lighting panels.
- Founded in Rochester NY in 2010
- Focused exclusively on OLED lighting and its benefits
 - Thin
 - Light weight
 - Low temperature
 - High efficiency, now and future potential
 - Solid state benefits including easy integration of drivers and controls
 - Specialty features transparent, flexible, color changing, ...
- Our first product is a maker light for health care applications.
- Larger panels will be shown at Lightfair.

OLEDWorks Introduction

- 22 full-time OLED experts
 - Over 200 years of combined OLED experience
 - Experience across all areas of OLED technology
- Acquired equipment and set up of state of the art OLED R&D facility
- Design and startup of novel, flexible, scalable
 OLED production facility.
- Production of our first product has started.
- We work with many partners:
 - Suppliers to the OLED lighting industry
 - Downstream luminaire partners.

OLEDWorks Research and Development lab

One of four research OLED deposition coaters

2014-05-07

If I had \$100M to build a large OLED lighting manufacturing plant, would I build it in the US?

Disadvantages

- OLED industry concentration is in Asia, focused on displays.
- Majority of industry suppliers are overseas
 - Equipment suppliers
 - Substrates suppliers
 - Encapsulation suppliers
 - OLED materials suppliers
- "Technology commons" for OLED in US is thinning
 - University, Gov't research
 - Supporting industries (e.g. thin film)

Advantages

- OLED expertise critical mass is here. This is a huge factor.
- Luminaire customers want custom products and easy communications.
- Low-skill labor is only a minor part of Cost of Goods Sold.
- US is very competitive in R&D, and for industry success we rely on innovation for <u>reduced</u> <u>costs</u> and <u>higher performance</u> through:
 - Equipment
 - Processes
 - Materials

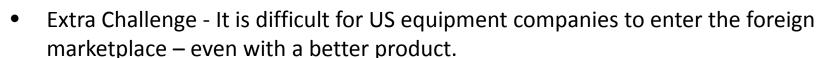
Current State of OLED Lighting Manufacturing in US

Our experience for early products, which uses conventional substrates, tandem OLED structures, and traditional encapsulation:

Category	Attributes	Today	Reason
Equipment	Custom	US - partnership	We needed innovations in manufacturing processes and equipment in order to succeed as a start-up with limited funding.
Substrates	Standard	US supply - probably Asia source	We need low cost, but we are small volume.
OLED Materials	Standard	Worldwide	We require competitive performance. We seek the latest improvements.
Encapsulation	Standard	Non-US	Highest performance, lowest cost.
Materials	Custom	US - partnership	World class skill, great partnership.

Summary - For custom solutions, US partnerships offer tremendous advantages.

Importance of Partnerships - Models for Progress in OLED Lighting Mfg


- Solutions to OLED lighting challenges are muliti-disciplinary:
 - For example developing a new material/process/machine using advances from adjacent fields
 - Technology breadth of solutions often requires partnerships.
 - Development is faster and the results are better with partnerships.
 - Both parties benefit Shared risks, shared rewards.
- Partnerships are facilitated locally
 - The "Technology Commons" interaction on many levels
 - For smaller companies collaboration can be easier
 - They need to pool resources and often seek critical DOE funding
 - They are driven to succeed willing to take risks, move faster
 - View that "a share of something bigger" is better than "all of something unknown"

Increasing OLED Lighting Manufacturing in the US - Proposal

- 1. Strategy focus on growing the OLED lighting panel manufacturing industry here in the US we need several companies manufacturing.
 - If the US loses this, the supporting component industries will diminish or leave the US to be near their customers.
 - Substrates, anodes, light extraction
 - Organic materials
 - Encapsulation materials and methods
- 2. The key in panel manufacturing is deposition operations **both**:
 - Vacuum Thermal Evaporation, and
 - Solution Processing
- 3. The critical partnership is panel manufacturer and deposition equipment maker
 - Supporting and developing this technology partnerships here is required for success
- 4. The US can win at this and have a strong OLED lighting manufacturing industry.
 - This will facilitate success of supporting component industries.

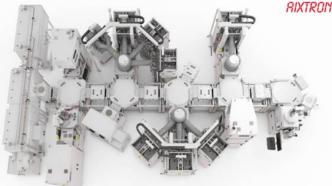
Future OLED Lighting - Will it be Vacuum Thermal Evaporation?

- The current vacuum thermal evaporation equipment is too expensive.
 - The Sunic G5 machine is predicted to have a depreciation of approx \$100-200/m2 (5 year depreciation at capacity).
 - The Cost of Goods Sold total target is \$100/m2 for OLED lighting to have high volumes (achieve \$80/klm and compete in general lighting).
 - Alternative approaches with lower capital cost must be developed.
- Machines must be developed enabling businesses to make profits while the market grows.
 - Today's VTE machines require business losses until machine is producing at capacity – and maybe beyond.

- Strong partnerships already exit between foreign OLED makers and their equipment suppliers.
- Decisions favor the local suppliers often due to gov't support not a level playing field.
- Applied Materials and Veeco appear to have stepped back.

Future OLED Lighting - Will it be Solution Deposition?

- Solution deposition has a good cost structure
 - Machine throughput can be very large
- The depreciation costs are still high.
 - Konica Minolta \$100M for 1M panels/month capacity (assume post yield and post substrate usage)
 - Product is 150x60mm (smaller size 50x30mm)
 - Deprecation is \$185/m2 (5 year depreciation at capacity)
 - Alternative approaches with lower capital cost must be developed.
- Solution based formulations currently have lower performance
 - The number of layers and degree of control is less than with vacuum thermal evaporation
- The US has many companies with solution/solvent deposition capabilities
 - This technology will likely be the low-cost route.
 - GE appears to have stepped back, Kateeva is targeting displays.



Increasing OLED Lighting Manufacturing in the US – How to make progress in deposition

- Desirable attributes:
 - Small and fast equipment
 - Lower initial cost with low capacity
 - Ability to expand capacity with reuse of capital
- Focus on speeding up processing to get capacity
 - We must understand the speed barriers and how we can overcome these.
- Expandable with incremental investment:
 - Small initial size multi function
 - Expansion by duplication and debottlenecking
 - Capacity increase by substrate speed increase
- Lighting does not need large-area substrates – unlike OLED displays

Why the US can Win at the Deposition Equipment Business

- There are interactions between:
 - Formulation and equipment
 - Process conditions and device performance
- The US can develop this equipment we have this knowhow.
- We need partnerships between OLED makers and equipment makers and government.
 - Look at the German and Korean models
- The investment will be worth the risk.
- In 10 years, WW OLED lighting volumes may be 10M m2/year with 20% CAGR (~5% of lighting market)
 - This could be 30-50 fast machines.
 - With 8 new machines/year
- The US should aim to dominate this manufacturing industry.
 - Other countries have the same target.

Kateeva G8

Will the future look like this?

Sunic G5 machine

Summary – Jobs of the Future in OLED Lighting

03/06/2014

- Focus on improving deposition technology:
 - Small, fast, expandable, cost effective, flexible, profitable
 - There is a long way to go. Current equipment models for success don't work.
 - Develop both VTE and solution deposition systems.
- Target partnerships to develop improved OLED deposition technology and use it in panel manufacturing
 - Primary Partnerships OLED makers and equipment makers to expand panel manufacturing
 - Enable small profitable panel mfg operations through improved process and equipment by leveraging an understanding of the interactions between product and process
- Require all projects to achieve DOE milestones to enter general lighting
- We can grow the OLED lighting manufacturing industry here in the US.
- "OLED Lighting If we aren't nimble, the future is dim"
 - Dave Gotthold, Veeco, DOE Mfg Workshop, Boston, Mar 2011

